The Modular Isomorphism Problem for small groups – revisiting Eick's algorithm

نویسندگان

چکیده

We study the Modular Isomorphism Problem for groups of small order based on an improvement algorithm described by Eick. Our allows to determine quotients I(kG)/I(kG)m augmentation ideal without first computing full I(kG). computations yield a positive answer MIP 37 and strongly reduce cases that need be checked 56. also show counterexamples found recently García-Lucas, Margolis del Río are only 2- or 3-generated 29. Furthermore, we provide proof observation Bagiński, which is helpful in eliminating computationally difficult cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The modular isomorphism problem for the groups of order 512

For a prime p let G be a finite p-group and K a field of characteristic p. The Modular Isomorphism Problem (MIP) asks whether the modular group algebra KG determines the isomorphism type of G. We briefly survey the history of this problem and report on our computer-aided verification of the Modular Isomorphism Problem for the groups of order 512 and the field K with 2 elements.

متن کامل

The isomorphism problem for Coxeter groups

By a recent result obtained by R. Howlett and the author considerable progress has been made towards a complete solution of the isomorphism problem for Coxeter groups. In this paper we give a survey on the isomorphism problem and explain in particular how the result mentioned above reduces it to its ‘reflection preserving’ version. Furthermore we desrcibe recent developments concerning the solu...

متن کامل

Cohomological Uniqueness, Massey Products and the Modular Isomorphism Problem for 2-groups of Maximal Nilpotency Class

Let G be a finite 2-group of maximal nilpotency class, and let BG be its classifying space. We prove that iterated Massey products inH∗(BG;F2) do characterize the homotopy type of BG among 2-complete spaces with the same cohomological structure. As a consequence we get an alternative proof of the modular isomorphism problem for 2-groups of maximal nilpotency class.

متن کامل

Defect Groups and the Isomorphism Problem

As a ring, a block may arise from more than one finite group. The resulting conjugacy issue for defect groups is important for the group ring isomorphism problem and for understanding block theory in general. There are even indirect structural consequences for finite groups, through G. Robinson’s work on the “Z-star theorem” for odd primes. A positive answer to the defect group conjugacy proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of computational algebra

سال: 2022

ISSN: ['2772-8277']

DOI: https://doi.org/10.1016/j.jaca.2022.100001